a2 United States Patent

Batke et al.

US009122876B2

US 9,122,876 B2
*Sep. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

METHODS FOR FIRMWARE SIGNATURE

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2014/0331038 A1

Rockwell Automation Technologies,
Inc., Mayfield Heights, OH (US)

Brian A. Batke, Novelty, OH (US); Jack
M. Visoky, Willoughby, OH (US);
James J. Kay, Chardon, OH (US); Scott
A. Mintz, Solon, OH (US); William B.
Cook, Northfield, OH (US)

Rockwell Automation Technologies,
Inc., Mayfield Heights, OH (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

14/286,106
May 23, 2014

Prior Publication Data

Nov. 6, 2014

Related U.S. Application Data

Continuation of application No. 13/867,246, filed on
Apr. 22, 2013, now Pat. No. 8,738,894, which is a
continuation of application No. 12/829,261, filed on
Jul. 1, 2010, now Pat. No. 8,484,474.

(52) US.CL
CPC ...ccoonuenee. GO6F 21/572 (2013.01); GO6F 8/61
(2013.01); GOGF 9/4401 (2013.01); GOGF
21/44 (2013.01)

(58) Field of Classification Search
CPC .. HO4L 63/0823; HO4L 9/3263; HO4L 9/3268

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,055,148 B2* 5/2006 Marshetal. 717/172
2004/0025010 Al* 2/2004 Azemaetal. 713/156
(Continued)

FOREIGN PATENT DOCUMENTS

EP 1429224 Al 6/2004
EP 1881465 A2 1/2008
(Continued)
OTHER PUBLICATIONS

European Search Report dated Dec. 6, 2011 for EP Application No.
11172090.0-2212, 8 pages.

(Continued)

Primary Examiner — Fikremariam A Yalew
(74) Attorney, Agent, or Firm — Amin, Turocy & Watson,
LLP

(57) ABSTRACT

A method for installing embedded firmware is provided. The
method includes generating one or more firmware file
instances and generating one or more digital certificate
instances that are separate instances from the firmware file
instances. The method includes associating the one or more

gl;;gcllbg > (2006.01) digital certificate instances with the one or more firmware file
GO6F 21/57 (2013'01) instances to facilitate updating signature-unaware modules
GO6F 21/44 (2013'01) with signature-aware firmware or to facilitate updating sig-
GO6F 9/445 (2006.01) nature-aware modules with signature-unaware firmware.
GOG6F 9/144 (2006.01) 14 Claims, 8 Drawing Sheets
Certificate 2 V- 200
(Contains
firmware SHA -1
hash and other
information)
l—210
Firoware | SBA-1_Hash Function Y Y hat value
230 —/ 260
w
E Appended to the
- Certificate
g
=
240 g
=
g
20
Certificate Hash RSA;’;X;;:ﬁ]::y Certificate

e

US 9,122,876 B2

Page 2
(56) References Cited OTHER PUBLICATIONS

Office Action dated Apr. 24, 2012 for U.S. Appl. No. 12/829,261, 19

U.S. PATENT DOCUMENTS pages
Office Action dated Oct. 12,2012 for U.S. Appl. No. 12/829,261, 15

2004/0025036 Al 2/2004 Balard et al. pages.
2008/0263679 Al 10/2008 Ho et al. Office Action dated Jul. 19, 2013 for U.S. Appl. No. 13/867,246, 22

pages.
FOREIGN PATENT DOCUMENTS Office Action dated Oct. 20, 2014 for European App No. 11172090.0.

5 pages.

WO 9933221 Al 7/1999
WO 2004075505 Al 9/2004

* cited by examiner

US 9,122,876 B2

Sheet 1 of 8

Sep. 1, 2015

U.S. Patent

["SI
SATNAON TIVMVY wmmﬁ@ﬂﬁ
dANLVNOIS TINLYNOIS
091 — 0LT —
A a A
SALvddn
ALMNOAS TVOOT
081 — 7
(S) ALVOIALLIFD (S) AdVNId
0€T TV.LIOIA TIV MINITA
071 —
OANI NOISIATY 4
oc TIVMATIVH H
1 —
TOOL AVOINMOd
SATTAIVARd |o ANV WH04LV1d
ov1 —| ANV OITdNd INAINJOTIATA
011 _/

‘lﬁ/ll.ccﬁ

US 9,122,876 B2

Sheet 2 of 8

Sep. 1, 2015

U.S. Patent

\I 0€7

T s

/
\

uondunyg yseg 1-VHS

oﬂw.m”wm@_w uond£iouy USEE 1IN0
. A3 eAlId VSY
05T —7 =B
=
ﬁ
)
=
= \I 0¥z
=
n
&
==
BIYILII)) \n
oy 03 papuaddy m
w
09z —
anfea ysey sm/q
(uoyewLIO}UL
JI1[10 pue ysey
1 - VHS dJemuLiy
surepuo)))
00z —Y - aeAnI)

01T —

TR MULIL]
IMPOJA

US 9,122,876 B2

Sheet 3 of 8

Sep. 1, 2015

U.S. Patent

€ ‘81

b] 800010N00Ud e HdALLONGON
. ar MOaNdA HSVH TV ML AT
05€ — e — 0P —
LOArdn ALIAITVA WANSSI
pee — DALENS 0se —1 pre — S
WHLNODTV
oze AN | wEEWnNTvTNEs oe NOISYAA
pIE
00s — ALYOIILLYED TV.LIOI ATdIAVXA

US 9,122,876 B2

Sheet 4 of 8

Sep. 1, 2015

U.S. Patent

ojepdn aja|dwon
‘plfeA st oJemull
\

/// \\\ Q @ .—u
vy — " —

it |

PN

arepdn Lioge v
‘Pireaul a/emu
\ /
\ /

\ /

oy —

ooy — 7

\wm_ Em:w/_w,,
perdAioep
I a— | aunjeubls sydApep 1ebie |
yolew ysey
|\ //m,,rr m@OO\\
N 08y —~
Sl=lIIES]
Jo ysey sejejnojes jobie |
oy —" 4
g omcy_mmww“_mo Areulq aJemuy
. m®.£u~m§) Ve jo ysey sajenojeo 1abue |
09— oSy —
sinpow }196.e} 0} Areulg
SIBMLLY spuss Aminn
ory — 1
. \o mv_om_._o///
Y Areujwiaad !
ON . sossed \\v
2 BIEOIHS]) -
0Ty — T
sjnpow }eb.e}
0} 8BS0 spuss AN
01y —

US 9,122,876 B2

Sheet 5 of 8

Sep. 1, 2015

U.S. Patent

S *Si

NOILdAYONH

DNIHSVH
IJIHAdVIDOLdAYED

HINLVNDIS TV.LIDIA

NOILVOIATIHA ALIOALINI 3IVMANAIA

00s

US 9,122,876 B2

Sheet 6 of 8

Sep. 1, 2015

U.S. Patent

9 *S1

SY4SN A4ZNOHLNY
MO SYUIVd
or9 —— AIM ALVYINED

N

SHLVOIALLIHD
JANDIS HLVIINED

N

0€9 —

dSN AT 4O
079 —{ Ad0OS ANINYALAA

AN

NOILVIANTD
TANLVNOIS ANV INFNADVNVIN AT

009 . 4 019 —~

SAHN HILVAId
/O1I'T19Nd HLVAINAED

U.S. Patent Sep. 1, 2015 Sheet 7 of 8 US 9,122,876 B2

EXAMPLE BUILD PROCEDURE

/— 700
GENERATE FIRMWARE FILES
AND CERTIFICATES A —— 710
SEPARATE INSTANCES
BUILD ADDITIONAL
CERTIFICATES FOR L 720
ADDITIONAL FIRMWARE
INSTANCES
GENERATE HASH VALUE [730
CREATE CERTIFICATE — 740
RUN CERTIFICATE THROUGH [— 750
HASH ALGORITHM
GENERATE DIGITAL L 760
SIGNATURE
CREATE SCRIPT FILE FOR |— 770
SOFTWARE UPDATE TOOL

Fig. 7

U.S. Patent

EXAMPLE FIRMWARE UPDATE PROCEDURE

Sep. 1, 2015 Sheet 8 of 8

US 9,122,876 B2

RECEIVE UPDATED
CERTIFICATE AT MODULE

—— 810

IF CERTIFICATE PASSES INITIAL
CHECKS, STORE IN RAM

— 820

RECEIVE FIRMWARE IMAGE AT
MODULE AND STORE IN RAM

— 830

VERIFY INTEGRITY OF
FIRMWARE IMAGE

— 840

REPEAT ABOVE STEPS FOR
EACH INSTANCE THAT IS PART
OF MODULE BUILD

— 850

800
/_

Fig. 8

US 9,122,876 B2

1
METHODS FOR FIRMWARE SIGNATURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13,867,246, filed on Apr. 22, 2013, entitled “METHODS
FOR FIRMWARE SIGNATURE”, which is a continuation of
U.S. application Ser. No. 12/829,261, filed on Jul. 1, 2010,
entitled “METHODS FOR FIRMWARE SIGNATURE”, the
entireties of which are incorporated herein by reference.

TECHNICAL FIELD

The claimed subject matter relates generally to industrial
control systems and more particularly to systems and meth-
ods that facilitate secure updates of embedded firmware by
isolating cryptographic information from binary instances of
the firmware.

BACKGROUND

Modern electronic devices often employ embedded firm-
ware that may periodically need updated as features are
enhanced or device problems corrected. Examples of such
devices include consumer products such as MP3 players as
well as industrial control devices such as programmable auto-
mation controllers. When updating firmware in a device, it is
important to verify that the firmware is valid for the device
and has been created by the manufacturer (e.g., it is not rogue
or counterfeit firmware). Also, the respective firmware should
be verified so as not to have been tampered with or corrupted.
This is particularly important for industrial control systems,
where use of invalid, corrupted or otherwise compromised
firmware can result in denial of service to the application or at
worst unpredictable or dangerous operation. For instance, an
attacker could modify a firmware image such that it would
render a device unusable, or could modify a firmware image
by injecting malicious code that could cause the device to
operate in an unsafe manner.

One method to facilitate secure operations of firmware is to
employ public and private keys for cryptography. The distin-
guishing technique used in public key cryptography is the use
of'asymmetric key algorithms, where the key used to encrypt
a message is not the same as the key used to decrypt the
respective message. Each user has a pair of cryptographic
keys—a public key and a private key. The private key is kept
secret, while the public key may be widely distributed. Mes-
sages are encrypted with the recipient’s public key and can
only be decrypted with the corresponding private key. Digital
signatures are a message signed with a sender’s private key
and can be verified by anyone who has access to the sender’s
public key.

In relation to industrial control systems, a problem arises
when trying to determine how to update firmware on differing
classes of devices in a secure manner (e.g., older versus newer
devices having differing firmware capabilities). Some
devices have been in operation for years and may have no
knowledge regarding how to process the above-described
encryption techniques including public keys and signatures.
For instance, with existing firmware—that which is already
released for existing devices may not be signature aware.
Thus, a problem exists on how existing modules can be
updated with signed, signature-aware firmware in a secure
manner. If a trouble-shooting scenario exists where a user
needs to revert to older firmware, another problem arises in
how a module can be “securely” downgraded to unsigned

20

30

40

45

2

firmware. Still yet other problems include how can existing
unsigned firmware be verified for integrity and how can sig-
nature-aware production firmware accept a debug or devel-
opment build that is unsigned. To date, simple checksum
procedures have typically been employed for security but
there is a need for a more secure mechanism such as public
and private key exchanges. Clearly, there is a need for encryp-
tion techniques to be applied to electronic firmware update
procedures in industrial control systems yet to date, no meth-
ods have been developed to address the problem of backwards
compatibility with modules that may not have the underlying
software capabilities to process advanced encryption tech-
nologies.

SUMMARY

The following summary presents a simplified overview to
provide a basic understanding of certain aspects described
herein. This summary is not an extensive overview nor is it
intended to identify critical elements or delineate the scope of
the aspects described herein. The sole purpose of this sum-
mary is to present some features in a simplified form as a
prelude to a more detailed description presented later.

Systems and methods are provided to facilitate secure
updating of industrial control system hardware and compo-
nents while providing a path for upgrading and/or downgrad-
ing module firmware that may not be compatible with the
most current security procedures. This includes generating
firmware binaries that are separate from the underlying digi-
tal certificates that are employed during download of the
respective binaries. Firmware that employs multiple images
or components can utilize certificates for each component,
where certificates include a list of hardware revisions for
which the firmware is valid. Existing, signature-unaware
firmware can be updated with signature-aware firmware by
sending the new firmware binary without the certificate. Sig-
nature-aware firmware can be updated with unsigned firm-
ware as needed, e.g., for debug/development by sending the
binary without the certificate (e.g., subject to certain con-
straints such as requiring local access to the module). Certifi-
cates can be created for previously-released, unsigned firm-
ware, without modifying the existing firmware, where
software tools can then verify the integrity of the firmware
using the certificate. In previous methods, there was no sepa-
ration between certificate and binary, where digital certifi-
cates were a created as a portion of the binary file that oper-
ated the respective modules. For new modules, this technique
would provide a secure update procedure yet older modules
would have no manner in which to process new security
procedures during download so the only option would be to
replace such modules before downloading which would be
cost prohibitive.

To the accomplishment of the foregoing and related ends,
the following description and annexed drawings set forth in
detail certain illustrative aspects. These aspects are indicative
of but a few of the various ways in which the principles
described herein may be employed. Other advantages and
novel features may become apparent from the following
detailed description when considered in conjunction with the
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram illustrating a system
for generating firmware signatures in an industrial control
process.

US 9,122,876 B2

3

FIG. 2 is a block diagram that illustrates an example firm-
ware signature process.

FIG. 3 is a block diagram of an example digital certificate.

FIG. 4 is a flow diagram illustrating an example firmware
signature process.

FIG. 5 is a diagram illustrating an example firmware integ-
rity component.

FIG. 6 illustrates an example key management and signa-
ture generation process.

FIG. 7 illustrates an example build procedure for generat-
ing separate binary files and certificates.

FIG. 8 illustrates an example firmware update procedure.

DETAILED DESCRIPTION

Methods are provided for utilizing digital signatures in
accordance with industrial control system firmware down-
loads. In one aspect, a method for installing embedded firm-
ware is provided. The method includes generating one or
more firmware file instances and generating one or more
digital certificate instances that are separate instances from
the firmware file instances. The method includes associating
the one or more digital certificate instances with the one or
more firmware file instances to facilitate updating signature-
unaware modules with signature-aware firmware or to facili-
tate updating signature-aware modules with signature-un-
aware firmware.

Referring initially to FIG. 1, a system 100 is illustrated for
generating firmware signatures in an industrial control pro-
cess. The system 100 includes a development platform and
download tool 110 (also referred to as platform) that gener-
ates one or more firmware binary files 120 and one or more
digital certificates 130 that are separate instances from the
binary files yet associated with the respective binaries for
later secure downloading. The firmware binaries 120 (e.g.,
boot code, runtime code, file system code, web pages, applets,
configuration, user programs, and so forth) can be for sub-
stantially any type of component that can be found in an
industrial environment including controllers, servers, clients,
input/output modules, communications modules, and other
electronic devices capable of having firmware that is down-
loadable across a network. The platform generates one or
more public and private keys 140 in addition to the digital
certificates. As shown, hardware revision information 150
can be encoded into the certificates 130 as will be described in
more detail below.

For modules that have been developed under signature
processing principles—referred to as signature-aware mod-
ules 160, firmware binaries 120 along with separate instances
of digital certificates 130 can be loaded on the modules in a
secure manner. For older modules—referred to as signature-
unaware modules 170, the firmware binaries can be directly
loaded without the corresponding digital certificates which
can be loaded via a local update procedure or tool at 180. For
example, feedback mechanisms (e.g., [/O inputs) can de
detected to ensure a user has physical access to a given indus-
trial component before allowing update of the firmware
binary and validating against a locally generated certificate.
After updates have occurred locally, remote procedures can
occur in the future as the module will now have signature-
aware capability. General purpose firmware update tools can
be employed that process the certificate like other firmware
binaries, thus the tool needs no particular knowledge of how
to process the certificate.

In general, the system 100 enables secure updating of
industrial control system hardware and components while
providing a path for upgrading and/or downgrading module

15

20

30

40

45

55

4

firmware that may not be compatible with the most current
security procedures. This includes generating firmware bina-
ries 120 that are separate from the underlying digital certifi-
cates 130 that are employed during download of the respec-
tive binaries. Firmware that employs multiple binary
instances 120 can utilize at least one digital certificate 130 for
each instance, where certificates include a list of hardware
revisions 150 for which the firmware is valid. Existing, sig-
nature-unaware firmware can be updated with signature-
aware firmware by sending the new firmware binary without
the certificate at 170. Signature-aware firmware can be
updated with unsigned firmware as needed, e.g., for debug/
development by sending the binary without the certificate
(e.g., subject to certain constraints such as requiring local
access to the module). Certificates 130 can be created for
previously-released, unsigned firmware, without modifying
the existing firmware, where software tools at 180 can then
verify the integrity of the firmware using the certificate. In
previous methods, there was no separation between certifi-
cate and binary, where digital certificates 130 were a created
as a portion of the binary file that operated the respective
modules. For new modules, this technique would provide a
secure update procedure yet older modules would have no
manner in which to process new security procedures during
download so one option would be to replace such modules
before downloading which would be cost prohibitive.
Another option would be to build an additional (unsigned)
firmware binary whose purpose is to update an older module
to be signature aware. It may be more desirable to create one
version of the firmware then have the certificate be separate.

As noted, the system 100 allows multiple binaries 120 and
a corresponding certificate 130 for each binary. For example,
one certificate for boot code, one certificate for runtime code,
one certificate for file system. This method can also be
extended to other updatable entities such as user programs,
for example. The system can include use of a secure boot-load
mechanism that allows secure downgrading to older signa-
ture-unaware firmware. In another example, a device parti-
tions firmware into “boot code” and “application code,’
where boot code is signature-aware. Application code may be
signature aware (new code), or unaware (existing code).
When the device starts, the boot code verifies the signature of
the application code (boot code should be able to access the
signature of the application code). If valid, the application
code can then run. Downgrading to signature unaware appli-
cation code involves calculating a signature for the old appli-
cation code and storing it such that the boot code can access
it and then updating the device with the old application code.
In this manner, the boot code can determine that the old
application code was in fact produced by the manufacturer
and has not been corrupted.

In an alternative aspect, when the system 100 is imple-
mented in a controller for example, the public key can be
stored outside of the firmware image (outside of the boot and
outside of the runtime). As can be appreciated, every module
does not have to store the key in this manner, and this is notan
essential part of the mechanism, but is another enhancement/
option for some modules. This has the benefit of allowing
developers to change the public key independent of the firm-
ware if needed. For example, one key can be employed for
development builds and another for when the firmware is
publicly released. Should the private key ever be compro-
mised or lost, developers could update the public the key on a
module and still be able to use the old firmware, because the
key as stored in the module would be decoupled from the
actual firmware itself.

US 9,122,876 B2

5

In another aspect, the system supports a method for install-
ing embedded firmware. This includes generating one or
more firmware file instances and generating one or more
digital certificate instances that are separate instances from
the firmware file instances. This also includes associating the
one or more digital certificate instances with the one or more
firmware file instances to facilitate updating signature-un-
aware modules with signature-aware firmware or to facilitate
updating signature-aware modules with signature-unaware
firmware. The method includes loading the digital certificate
instances from a tool that processes the digital certificate
instances in the same manner as the firmware file instances
(e.g., the tool process the digital certificates as merely another
binary instance).

The method includes employing a secure boot load tool to
allow signature unaware firmware to be securely loaded. This
includes employing feedback mechanisms to ensure that a
user has physical access to a module in order to update sig-
nature unaware firmware. This can also include loading sig-
nature-aware modules with unsigned firmware in order to
facilitate debug of the modules while also employing feed-
back mechanisms to ensure that a user has physical access to
amodule in order to update signature unsigned firmware. The
method includes associating separate certificates with mul-
tiple binaries in order to sign different portions of firmware,
where the certificate includes a component to identify one or
more hardware revisions supported by signed firmware. The
method also includes creating a certificate for unmodified
firmware and verifying firmware integrity via an update tool
and running older versions of firmware through a signing
utility and verifying at least one signature against a binary
before loading. This may also include employing a proxy
module to run the signing utility or verify the at least one
signature. The proxy module would intercept requests to
update firmware in a signature-unaware target module, and
would verify the certificate against the firmware to be loaded
on the target module. If the certificate and firmware are valid,
the proxy would then pass the firmware (but not certificate) to
the target module.

It is noted that components associated with the industrial
control system 100 can include various computer or network
components such as servers, clients, controllers, industrial
controllers, programmable logic controllers (PLCs), energy
monitors, batch controllers or servers, distributed control sys-
tems (DCS), communications modules, mobile computers,
wireless components, control components and so forth that
are capable of interacting across a network. Similarly, the
term controller or PLC as used herein can include function-
ality that can be shared across multiple components, systems,
or networks. For example, one or more controllers can com-
municate and cooperate with various network devices across
the network. This can include substantially any type of con-
trol, communications module, computer, I/O device, sensors,
Human Machine Interface (HMI) that communicate via the
network that includes control, automation, or public net-
works. The controller can also communicate to and control
various other devices such as Input/Output modules including
Analog, Digital, Programmed/Intelligent I/O modules, other
programmable controllers, communications modules, sen-
sors, output devices, and the like.

The network can include public networks such as the Inter-
net, Intranets, and automation networks such as Control and
Information Protocol (CIP) networks including DeviceNet
and ControlNet. Other networks include Ethernet/IP,
DH/DH+, Remote 1/0, Fieldbus, Modbus, Profibus, wireless
networks, serial protocols, and so forth. In addition, the net-
work devices can include various possibilities (hardware or

10

15

20

25

30

35

40

45

50

55

65

6

software components). These include components such as
switches with virtual local area network (VLLAN) capability,
LANs, WANSs, proxies, gateways, routers, firewalls, virtual
private network (VPN) devices, servers, clients, computers,
configuration tools, monitoring tools, or other devices.
Turning now to FIG. 2, a block diagram illustrates an
example firmware signature process 200. At 210, a normal
binary file is created. At 220, a digital certificate is generated
that contains information relating to the firmware 210. At 230,
a hash value is generated for the firmware image of 210. At
240, a hash value is determined and created for the certificate
generated at 220. At 250, the hash values are encrypted with
a private key to create a signature. At 260, signatures are
appended to the certificate 220, where the certificates are now
considered signed.
In general, the firmware signature mechanism as illustrated
in the process 200 can be summarized as follows:
A public/private key pair can be generated using secure
means or components. The private key is used in creating
the digital signature. The public key is used by modules
in decrypting the signature.
As part of the build procedure, the firmware image is run
through an e.g., SHA-1, SHA-2, MDS5, and so forth
algorithm to generate a hash value.
The build procedure creates a certificate that includes:
The hash value for the firmware image
Information to identify the module type or hardware
revision for which the firmware was built

A digital signature, which is the hash value of the cer-
tificate itself, encrypted with the RS A algorithm using
the private key

At firmware update time, the module receives the certifi-
cate containing the firmware’s hash value and the cer-
tificate digital signature. The module computes the hash
value of the certificate, decrypts the signature, and com-
pares the hash values. If the hash values match, then the
certificate is valid. If not, the update is rejected.

After receiving the entire firmware image, the module
computes the hash value of the firmware and compares it
to the value from the certificate. If the values don’t
match, the firmware update is rejected.

FIG. 3 illustrates an example digital certificate 300. Before
proceeding, it is noted that the certificate 300 and the
examples that are described herein are merely illustrative in
nature and that it is to be appreciated that more or less fields
may be provided in accordance with the claimed subject
matter. As shown, the certificate 300 may include a version
field 310, a serial number field 314, a signature algorithm
identifier 320, an issuer field 324, a validity field 330, a
subject field 334, a key field 340, a hash field 344, a vendor ID
350, a product type 354, or a product code 360, for example.

In general, the certificate 310 can be formatted according to
the X.509 standard for PKI certificates, for example. The
certificate can be formatted in the DER format of the ASN.1
standard, for example. This is a widely used and accepted
format for storing and transmitting certificates. Example cer-
tificates include:

The distinguished name field will be used to store the
module information, such as module name, family
name, and vendor name. These fields are to be present,
yet some may be ignored by the particular module if the
field is not applicable.

The public key section includes the module’s public key.
Note however that the target module should already have
knowledge of the public key built into its firmware, so
the public key in the certificate will be ignored by the
module.

US 9,122,876 B2

7

Custom extensions are defined to hold the hash value of the
associated firmware, as well as the vendor ID, product
code, product type, firmware revision, and hardware
revision. These fields are generally considered manda-
tory. Despite these custom insertions/deletions, these
certificates still conform to the rules of the certificate.
The certificate structure (in plain text) is for example:

Certificate:

Data:
Version: 3
Serial Number: <Serial Number>
Signature Algorithm: SHA1WithRSAEncryption
Issuer: = Company Name
Validity
Not Before: <Date of Creation>
Not After: <Date of Creation + 100 years>
Subject: CN=<Module Name>, OU=<Module Family>, O=<Vendor>
Subject Public Key Info:
Public Key Algorithm: RSAEncryption
RSA Public Key: (VALUE IGNORED)
Modulus (1024 bit): <module public key modulus>
Exponent: <module public key exponent>
X509v3 extensions:
Firmware Hash: <Hash Value>
Vendor Id: <Vendor Id>
Product Type: <Product Type>
Product Code: <Product Code>
Firmware Major Rev: <Firmware Major Rev>
Firmware Minor Rev: <Firmware Minor Rev>
Hardware Rev String: <Hardware Rev Bitstring™>
Signature Algorithm: SHAIWithRSAEncryption
<Digital Signature Value>

FIG. 4 is a flow diagram illustrating an example firmware
signature process 400. While, for purposes of simplicity of
explanation, the methodology is shown and described as a
series of acts, it is to be understood and appreciated that the
methodologies are not limited by the order of acts, as some
acts may occur in different orders or concurrently with other
acts from that shown and described herein. For example,
those skilled in the art will understand and appreciate that a
methodology could alternatively be represented as a series of
interrelated states or events, such as in a state diagram. More-
over, not all illustrated acts may be required to implement a
methodology as described herein.

Proceeding to 410 of FIG. 4, a firmware update utility (or
utility) sends a certificate to a target module. At 420, a deter-
mination is made as to whether the certificate passes prelimi-
nary checks such as veritying that the certificate is appropri-
ate for the type of module being updated. The vendor id 350,
product type 354 and product code 360 can be verified at this
point. If a problem is detected, the process proceeds to 430
where the update procedure is aborted. If the checks pass at
420, the process proceeds to 440 and sends the firmware
binary corresponding to the certificate instance to the target
module. At 450, the target calculates a hash of the firmware
binary. At 460, a determination is made as to whether the
binary hash matches the hash values computed in the certifi-
cate. If not, the process ends at 430. If the hash check matches
at 460, the process proceeds to 470, where the target calcu-
lates a hash for the certificate. At 480, the target decrypts the
signature using the target’s stored key. At 490, a determina-
tion is made as to whether or not the hash value matches the
decrypted signature. If not, the process ends at 430. Ifthe hash
matches the signature at 490, the firmware is declared valid
and the firmware update is completed at 494.

Referring to FIG. 5, an example firmware integrity com-
ponent 500 is provided. At 510 cryptographic hashing is

10

15

20

25

30

40

45

55

65

8

provided. Generally, a cryptographic hash function is a one-
way mathematical function that takes a block of data as input
and produces a fixed size string of bytes as output. The output
of a hash function is sometimes called a “message digest”, a
“hash value”, a “checksum”, or just a “hash”. Examples of
hash functions are MD5 and SHA-1 or SHA-2, for example.
A suitable hash function will produce a relatively unique hash
value from which it is infeasible to determine the original
message. The hash value is a fixed length, which is often (but
not necessarily) shorter than the original piece of data. As a
result, a hash value is in general not unique to a given mes-
sage, since the set of possible messages is often far larger than
the set of possible hashes. Two pieces of data which are
different yet yield the same hash are referred to as a collision
in the hash function. The more difficult collisions are to
generate, the stronger the hash function is (collisions would
only be generated by brute force with an ideal hash function).

At 520, encryption refers to a process of scrambling data in
such a way that only someone knowing secret information
(e.g., a “key”) can obtain the original data. In public key
encryption, keys exist in pairs. The public key is published
and known to the public, whereas the private key is kept secret
and only known to those claiming a particular identity. A
message encoded with one of the keys can only be decoded
with the corresponding key. For example, if a private key is
used to encrypt a piece of data, then only the corresponding
publickey can be used to decrypt that data. RSA is an example
of'a public key encryption algorithm but other algorithms are
possible.

At530, adigital signature is an application of cryptography
to ensure that a message (or document) has been sent by the
identified sender. A digital signature typically involves the
sender encrypting a hash of the message with the sender’s
private key. The receiver then decrypts the signature with the
sender’s public key. If the signature can successfully be
decrypted (i.e., if the decrypted hash value matches the mes-
sage hash value), then the receiver can be sure that the sender
is the author of the message. An example of a standard digital
signature system is the Digital Signature Standard (DSS).

FIG. 6 illustrates an example key management and signa-
ture generation process. Proper key management and support
for signature generation is essential to ensure the robustness
of the firmware integrity mechanism. The general require-
ments for key management and signature generation are listed
below:

At 610, a mechanism for public/private key generation is
provided. In order to support digitally signed firmware, a
mechanism is needed to generate public/private key pairs, and
then manage restricted access to the private keys. In order to
maintain the integrity of the signature, private keys should be
accessible only by a very small number of authorized users.
At 620, a determination of whether there is a single public/
private key pair for all, or per family of module is considered.
At 630, as part of the firmware build process, a mechanism is
employed for generating a signed certificate using the appro-
priate private key. Access to the signing mechanism should be
restricted to authorized users, and also create an audit log.
This is to prevent unauthorized creation of signed fraudulent
or unauthorized firmware that could then be distributed out-
side of a desired domain. At 640, an alternative solution
would be a software package that is able to generate key pairs
for authorized users, and then produces signed certificates for
a given key pair and certificate content. It is expected that the
infrastructure for generating key pairs and signed certificates
will be shared across operating units of a business for
example.

US 9,122,876 B2

9

FIG. 7 illustrates an example build procedure 700 for gen-
erating separate binary files and certificates. It is noted that
the firmware build procedure can be specific to a module’s
build environment. It is not required that all modules follow
the exact same build procedure. The following shows the
basic steps in an example build procedure 700 in order to
support firmware signing. At 710, the build procedure pro-
duces (at least) 2 files: one file for the firmware image and
another for the certificate. Each file generally corresponds to
an instance. Using separate instances makes it possible to
allow module downgrading to previous (non-signed) firm-
ware revisions. In general, each firmware binary corresponds
to a firmware component (e.g., boot, runtime, file system, and
so forth). Each firmware binary/certificate pair are then asso-
ciated. Thus, each firmware binary/certificate pair can be
associated via a defined mechanism such as file name or file
identifier, for example.

At 720, some modules have more than one file instance for
firmware. In this case, each firmware instance has a corre-
sponding certificate. At 730, when built, the firmware image
is run through the SHA-1 algorithm (or comparable type) to
generate a hash value for the firmware image. At 740, the
build procedure creates the certificate that includes:

The hash value for the firmware image

Information to identify the module type for which the

firmware was built:
Vendor ID, Product Type, Product Code, target Hardware
Revision (if any), firmware revision being built.

Modules that use a single firmware image for multiple
product codes (same firmware, different hardware)
should select a single product code for the purposes of
the certificate.

At 750, the certificate (not including the Digital Signature
field) is then run through the SHA-1 algorithm (or compa-
rable type) to generate a hash value for the certificate. At 760,
the digital signature is then created, per the algorithm
described above and appended to the certificate. At 770, the
build procedure then creates a script file for use with a soft-
ware utility for updating modules.

FIG. 8 illustrates an example firmware update procedure
800. The following describes the operation of an example
firmware update procedure, assuming the module has suffi-
cient RAM to hold the incoming firmware image. At 810, the
module first receives the update certificate. The certificate
should at least be minimally checked for the proper vendor id,
product type, product code, and so forth. If the module has
sufficient processing capability, the certificate signature
should also be checked including:

Decrypt the signature using the RSA public key to obtain

the original hash value.

Compute the hash value for the certificate (not including

the signature field).

Compare the hash value to that which was in the signature.

If the values do not compare, the firmware update is
rejected.

If the module does not have sufficient processing power to
perform the above steps, such that software utility would time
out, then the verification of the certificate can be performed at
the end of the update, before burning flash. At 820, if the
certificate passes the initial checks, it is stored in RAM. At
830, the module next receives the firmware image, which is
read into RAM. At 840, when the firmware image is received,
the module performs the following to verify the integrity of
the firmware image:

If not performed previously, decrypt the certificate signa-

ture, compute its hash value and compare to the original
hash value in the signature.

w

10

15

20

25

30

35

40

45

50

55

60

65

10

Compute the hash value of the firmware image and com-
pareto that which is stored in the certificate. If the values
do not match, reject the update as invalid.

The firmware image can then be written to flash.

It is desirable to also write the certificate to flash, since it
could potentially be used to verify firmware integrity at
startup (for those modules with sufficient compute
power).

At 850, the above steps (810-840) are performed for each

instance that is part of the module’s build.
It is noted that as used in this application, terms such as
“component,” “module,” “system,” and the like are intended
to refer to a computer-related, electro-mechanical entity or
both, either hardware, a combination of hardware and soft-
ware, software, or software in execution as applied to an
automation system for industrial control. For example, a com-
ponent may be, but is not limited to being, a process running
on a processor, a processor, an object, an executable, a thread
of execution, a program and a computer. By way of illustra-
tion, both an application running on a server and the server
can be components. One or more components may reside
within a process or thread of execution and a component may
be localized on one computer or distributed between two or
more computers, industrial controllers, or modules commu-
nicating therewith.
The subject matter as described above includes various
exemplary aspects. However, it should be appreciated that it is
not possible to describe every conceivable component or
methodology for purposes of describing these aspects. One of
ordinary skill in the art may recognize that further combina-
tions or permutations may be possible. Various methodolo-
gies or architectures may be employed to implement the
subject invention, modifications, variations, or equivalents
thereof. Accordingly, all such implementations of the aspects
described herein are intended to embrace the scope and spirit
of subject claims. Furthermore, to the extent that the term
“includes” is used in either the detailed description or the
claims, such term is intended to be inclusive in a manner
similar to the term “comprising” as “comprising” is inter-
preted when employed as a transitional word in a claim.
What is claimed is:
1. A method, comprising:
receiving, by a device, signature unaware firmware code;
and
installing, by the device via boot code, the signature
unaware firmware code on the first device, wherein the
boot code is configured for installation of a signature
aware firmware code and the signature unaware firm-
ware code to the device, and wherein the installing the
signature unaware firmware code further comprises:
receiving a certificate separate from and associated with
the signature unaware firmware code,

determining whether the certificate is valid by verifying
that a signature of the certificate is valid,

in response to the certificate being valid, loading the
signature unaware firmware code on the device, and

in response to the certificate being invalid, preventing
installation of the signature unaware firmware code
on the device.

2. The method of claim 1, wherein the installing the signa-
ture unaware firmware code further comprises verifying that
the signature unaware firmware code is received from a proxy
module located remotely from the device, where the proxy
module has verified the signature unaware firmware code.

3. The method of claim 2, wherein the proxy module inter-
cepted a request to install the signature unaware firmware
code on the device.

US 9,122,876 B2

11

4. The method of claim 2, wherein the proxy module veri-
fied the certificate generated for the signature unaware firm-
ware code.

5. The method of claim 1, wherein the determining whether
the certificate is valid further comprises verifying that the
signature unaware firmware code is valid for the certificate.

6. A non-transitory computer-readable medium having
instructions stored thereon that, in response to execution,
cause a device to perform operations comprising:

receiving signature unaware firmware code; and

installing, via boot code, the signature unaware firmware

code on the device, wherein the boot code is configure

for installation of a signature aware firmware code and

the signature unaware firmware code to the device, and

wherein the installing the signature unaware firmware

code further comprises:

receiving a certificate separate from and associated with
the signature unaware firmware code,

determining whether the certificate is valid by veritying
that a signature of the certificate is valid,

in response to the certificate being valid, loading the
signature unaware firmware code on the device, and

in response to the certificate being invalid, preventing
installation of the signature unaware firmware code
on the device.

7. The non-transitory computer-readable medium of claim
6, wherein the installing the signature unaware firmware code
further comprises verifying that the signature unaware firm-
ware code is received from a proxy module located remotely
from the device, where the proxy module has verified the
signature unaware firmware code.

8. The non-transitory computer-readable medium of claim
7, wherein the proxy module intercepted a request to install
the signature unaware firmware code on the device.

10

15

20

25

30

12

9. The non-transitory computer-readable medium of claim
7, wherein the proxy module verified the certificate generated
for the signature unaware firmware code.

10. The non-transitory computer-readable medium of
claim 6, wherein the determining whether the certificate is
valid further comprises verifying that the signature unaware
firmware code is valid for the certificate.

11. A system, comprising:

a first device configured to receive signature unaware firm-

ware code;

aboot code installed on the first device configured to install

the signature unaware firmware code on the first device

comprising:

receive a certificate separate from and associated with
the signature unaware firmware code,

determine whether the certificate is valid by veritying
that a signature of the certificate is valid,

in response to the certificate being valid, loads the sig-
nature unaware firmware code on the first device, and

in response to the certificate being invalid, prevents
installation of the signature unaware firmware code
on the first device; and

wherein the boot code is further configured for installation

of a signature aware firmware code.

12. The system of claim 11, wherein the boot code, prior to
installing the signature unaware firmware code, verifies that
the signature unaware firmware code is received from a proxy
module located remotely from the device, where the proxy
module has verified the signature unaware firmware code.

13. The system of claim 12, wherein the proxy module
intercepted a request to install the signature unaware firm-
ware code on the device.

14. The system of claim 12, wherein the proxy module
verified the certificate generated for the signature unaware
firmware code.

